Switch to: References

Add citations

You must login to add citations.
  1. Why quantum mechanics favors adynamical and acausal interpretations such as relational blockworld over backwardly causal and time-symmetric rivals.Michael Silberstein, Michael Cifone & William Mark Stuckey - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):736-751.
    We articulate the problems posed by the quantum liar experiment (QLE) for backwards causation interpretations of quantum mechanics, time-symmetric accounts and other dynamically oriented local hidden variable theories. We show that such accounts cannot save locality in the case of QLE merely by giving up “lambda-independence.” In contrast, we show that QLE poses no problems for our acausal Relational Blockworld interpretation of quantum mechanics, which invokes instead adynamical global constraints to explain Einstein–Podolsky–Rosen (EPR) correlations and QLE. We make the case (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Boltzmann’s Time Bomb.Huw Price - 2002 - British Journal for the Philosophy of Science 53 (1):83-119.
    Since the late nineteenth century, physics has been puzzled by the time-asymmetry of thermodynamic phenomena in the light of the apparent T-symmetry of the underlying laws of mechanics. However, a compelling solution to this puzzle has proved elusive. In part, I argue, this can be attributed to a failure to distinguish two conceptions of the problem. According to one, the main focus of our attention is a time-asymmetric lawlike generalisation. According to the other, it is a particular fact about the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Infinite Systems in SM Explanations: Thermodynamic Limit, Renormalization (semi-) Groups, and Irreversibility.Chuang Liu - 2001 - Philosophy of Science 68 (S3):S325-S344.
    This paper examines the justifications for using infinite systems to ‘recover’ thermodynamic properties, such as phase transitions, critical phenomena, and irreversibility, from the micro-structure of matter in bulk. Section 2 is a summary of such rigorous methods as in taking the thermodynamic limit to recover PT and in using renormalization group approach to explain the universality of critical exponents. Section 3 examines various possible justifications for taking TL on physically finite systems. Section 4 discusses the legitimacy of applying TL to (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Towards a Local Hidden Variable Theory.Peter J. Lewis - 2007 - Foundations of Physics 37 (10):1461-1469.
    A local hidden variable theory of quantum mechanics is formulated by adapting Gell-Mann and Hartle’s many-histories formulation. The resulting theory solves the measurement problem by exploiting the independence loophole in Bell’s theorem; it violates the independence of hidden variable values and measuring device settings. Although the theory is problematic in some respects, it provides a concrete example via which the tenability of this approach can be better evaluated.
    Download  
     
    Export citation  
     
    Bookmark   3 citations