Switch to: References

Citations of:

Mapping Kinds in GIS and Cartography

In Catherine Kendig (ed.), Natural Kinds and Classification in Scientific Practice. Routledge. pp. 197-216 (forthcoming)

Add citations

You must login to add citations.
  1. Prediction in selectionist evolutionary theory.Rasmus Gr⊘Nfeldt Winther - 2009 - Philosophy of Science 76 (5):889-901.
    Selectionist evolutionary theory has often been faulted for not making novel predictions that are surprising, risky, and correct. I argue that it in fact exhibits the theoretical virtue of predictive capacity in addition to two other virtues: explanatory unification and model fitting. Two case studies show the predictive capacity of selectionist evolutionary theory: parallel evolutionary change in E. coli, and the origin of eukaryotic cells through endosymbiosis.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mapping the Deep Blue Oceans.Rasmus Grønfeldt Winther - 2019 - In Timothy Tambassi (ed.), The Philosophy of GIS. Springer. pp. 99-123.
    The ocean terrain spanning the globe is vast and complex—far from an immense flat plain of mud. To map these depths accurately and wisely, we must understand how cartographic abstraction and generalization work both in analog cartography and digital GIS. This chapter explores abstraction practices such as selection and exaggeration with respect to mapping the oceans, showing significant continuity in such practices across cartography and contemporary GIS. The role of measurement and abstraction—as well as of political and economic power, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Letting Go of “Natural Kind”: Toward a Multidimensional Framework of Nonarbitrary Classification.David Ludwig - 2018 - Philosophy of Science 85 (1):31-52.
    This article uses the case study of ethnobiological classification to develop a positive and a negative thesis about the state of natural kind debates. On the one hand, I argue that current accounts of natural kinds can be integrated in a multidimensional framework that advances understanding of classificatory practices in ethnobiology. On the other hand, I argue that such a multidimensional framework does not leave any substantial work for the notion “natural kind” and that attempts to formulate a general account (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Constitutive elements in science beyond physics: the case of the Hardy–Weinberg principle.Michele Luchetti - 2018 - Synthese (Suppl 14):3437-3461.
    In this paper, I present a new framework supporting the claim that some elements in science play a constitutive function, with the aim of overcoming some limitations of Friedman's (2001) account. More precisely, I focus on what I consider to be the gradualism implicit in Friedman's interpretation of the constitutive a priori, that is, the fact that it seems to allow for degrees of 'constitutivity'. I tease out such gradualism by showing that the constitutive character Friedman aims to track can (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cutting the Cord: A Corrective for World Navels in Cartography and Science.Rasmus Grønfeldt Winther - 2019 - Cartographic Journal 57 (2):147-159.
    A map is not its territory. Taking a map too seriously may lead to pernicious reification: map and world are conflated. As one family of cases of such reification, I focus on maps exuding the omphalos syndrome, whereby a centred location on the map is taken to be the world navel of, for instance, an empire. I build on themes from my book _When Maps Become the World_, in which I analogize scientific theories to maps, and develop the tools of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific Coordination beyond the A Priori: A Three-dimensional Account of Constitutive Elements in Scientific Practice.Michele Luchetti - 2020 - Dissertation, Central European University
    In this dissertation, I present a novel account of the components that have a peculiar epistemic role in our scientific inquiries, since they contribute to establishing a form of coordination. The issue of coordination is a classic epistemic problem concerning how we justify our use of abstract conceptual tools to represent concrete phenomena. For instance, how could we get to represent universal gravitation as a mathematical formula or temperature by means of a numerical scale? This problem is particularly pressing when (...)
    Download  
     
    Export citation  
     
    Bookmark